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A simple recursive solution for a class of fading memory tracking filters is presented.
A fading memory filter provides estimates of filter states based on past measurements,
similar to a traditional Kalman filter. Unlike a Kalman filter, an exponentially decaying
weight is applied to older measurements, discounting their effect on present state esti-
mates. It is shown that Kalman filters and fading memory filters are closely related solu-
tions to a general least squares estimator problem. Closed form filter transfer functions
are derived for a time invariant, steady state, fading memory filter. These can be applied
in loop filter implementation of the DSN Advanced Receiver carrier phase locked loop

(PLL).

l. Introduction

The problem of estimating system state based on measure-
ments is usually addressed by some form of a least squares
estimator (LSE), where a Kalman filter is the common choice.
The Kalman filter (Ref. 1) offers a recursive solution for state
estimates, as well as for a state estimate covariance matrix.
However, most Kalman filter implementations are sensitive
to errors in modeling, both in generating a linearized model
and in selecting model parameters. The effect of mismodeling
is more severe when the system varies with time. Then, as the
Kalman filter attempts to fit all past data to a single model,
large errors in state estimates occur.

One approach to reducing effects of past data is to use an
LSE that applies an exponentially decaying weight to older
measurements. This “fading memory” approach, introduced
in Ref. 3, overcomes most mismodeling and instability prob-
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lems associated with standard Kalman filters, at a cost of
losing some of the information associated with the discounted
past measurements. In addition, the fading memory filter has
the advantage that an exponential decay of past data is an
intuitively clear concept to most electrical engineers, or any-
one who works with basic electrical circuits. Sorensen (Ref. 2)
presents a general recursive solution to the linear LSE problem,
that with an appropriate selection of parameters can be either
a fading memory filter or a standard Kalman filter., Unfor-
tunately, the computational load associated with the fading
memory filter implementation of Ref. 2 is excessive com-
pared to what can be achieved.

In this article, the recursive LSE solution proposed in
Ref. 2 is simplified for fading memory filters, assuming a
particular form of process noise covariance matrix, ¢, . The
resulting filter performs well for simulations of real life situa-




tions. The ensuing simplicity of the filter equations, based on
a largely intuitive selection of Q,, may incur some cost in
terms of optimality. The simplified equations are then applied
to a time invariant system, where filter gains have reached
their steady state value, and closed form filter input-to-output
transfer functions are derived.

ll. System Model and Recursive Solution

The linearized model of a system under consideration is
given by Eqgs. (1) through (3). Equation (1) describes how the
system state vector is propagated from one time point to the
next. Equation (2) defines the relationship between system
state and present measurement. All differences between state
propagation model and behavior of the actual system are
represented by the random variable v, _ , while measurement
noise is represented by . Usually, {vn_1 Yand {u, }are modeled
as zero-mean, white Gaussian random processes, with covari-
ance matrices given by Eq. (3).

xn = ('bn,n—l xn-l * Vn-l (1)
y, = H x, +u, )
T =
Ely V]l = Gy 8

Eu,uyl = RS, , 3)

E[vnu}z:] =0

where
Sm . The Kronecker delta function

x_ System state vector (at time n)
State transition matrix (from time »n - 1 to time n)
v Process (or state) noise

y_ Vector of measurements

Measurement transformation matrix

u, Measurement noise
Q,., Processnoise covariance matrix

R Measurement noise covariance matrix

E(+) Statistical expected value

The LSE problem can be stated as follows. Given a set of
measurements {yl., i=1...n}and a weight matrix S, find an

estimate of the state, X, , , that minimizes J :

= ~1 7T
Jo=U S UL @

where U, is the column vector composed of the individual
measurement noise vectors {u;, i =1...n}, and S, is a non-
negative definite matrix. In this formulation, the covariance
associated with initial state uncertainty is ignored.

The matrix S, is often defined as a diagonal, or quasi-
diagonal matrix, reflecting the stationary nature of the mea-
surement noise processes. When u, is a scaler, S, is a diagonal
matrix, while when u, is a k-length vector, Sn is a block
diagonal matrix consisting of & by & matrices along the block
diagonal, with zeroes elsewhere. Let us first explore the scalar
measurement case, with constant measurement noise variance.
There are two approaches for selecting the elements of S, . The
first approach is to assign equal weight to all measurements,
ie., S, is an identity matrix. This approach leads to a standard
Kalman filter. The second approach is to degrade older mea-
surements, accounting for less validity of older measurements.
In this case, the diagonal elements of S,, denoted s;, satisfy:

$;>s8,1=2...n

This approach results in a fading memory filter. The two
approaches can be easily extended to the cases where each
measurement is a k-length vector and measurement noise
covariance changes from one time to the next.

As the number of measurements increases, a complete
LSE solution (requiring inversion of an nk by rk matrix)
becomes computationally unattractive and a recursive form
of the algorithm is used. Sorensen proposed Eqgs. (5) through
(8) as an optimum recursive solution to the LSE problem:

J_Cn,n = ¢n,n—1 J—Cn—1,n-1 +Kn(yn "Hn¢n,n-1 J_Cn-1,n-1) ()

- T n-1
Pn,n—l = b5 Pn-l,n-l ¢n,n~1 e+ (O ©
= T T ~1
Kn - Pn, n-1 Hn (HnPn, n-1 Hn +Rn) (7)
Pn,n = Pn, n-1 Kn Hn Pn, n-1 (8)

where

X, n State estimate (at time »)
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K Filter gain

P , State estimate covariance matrix (at time n,
including », )
ney  State estimate covariance matrix (at time n, but
without y, )
[4
e” Decay factor

Typical filter update is as follows. In the nth step, Eq. (6)
is evaluated, extrapolating the state estimate covariance matrix
in time, and accounting for the process noise covariance
matrix. This equation also performs a time decay function,
using the multiplier et Next, filter gain is computed by
Eq. (7). Finally, the new measurement is incorporated into
the state estimate and the state covariance matrix, using Egs.
(5) and (8), respectively.

When the decay factor is unity, i.e. no degradation of past
measurements is used, Egs. (5) through (8) represent a standard
Kalman filter (Ref. 1). On the other hand, when -1 > 1 for
all », there is actual decay of past measurements, resulting in
a fading memory filter,

As seen in the above equations, the computational com-
plexity associated with this implementation of a fading mem-
ory filter is at least as high as that of a Kalman filter. However,
a significantly simpler filter implementation is derived in
Appendix A, for the design value of @ | selected according
to Eq. (12). The resulting recursion formulas are:

fn,n = ¢n,n—1 En—l,n—l + Kn (yn - Hn ¢n,n-—1 fn—l,n—l) (9)

= yT p-1 ~T 1
Mn - Hn Rn Hn + an ¢n,n—1 Mn-—l <bn,n—l (10)
= 1l yT p~1
Kn - M;‘l Hn Rn (11)
= T
Qn-l B ﬁn ¢n,n—1 Pn~1,n—l ¢n,n-—1 B" =0 (12)
where
M Inverse of state estimate covariance
" matrix
o, =— ! Filter decay factor, 0 <a, <1
e" g

Filter update for the nth measurement consists of updates
of M, K, and Xp - in that order. Computations associated
with this form of filter update are simpler than corresponding
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computations for a Kalman filter. A measure of the simplifi-
cation is that steady state value of P, ,, can be obtained from
a linear set of equations, rather than the (quadratic) Riccati
equation required for a Kalman filter. The filter decay factor,
used in Eq. (10), can be viewed as an exponential:

-7 /T
o =e " (13)

n

where T is the filter sample time and 7,, is the filter time con-
stant. With this definition, the filter response to input impulse
is somewhat similar to the response of an RC electrical circuit
to an impulse, with an exponentially decaying transient.
From the above equations it is clear that o has a dual role.
First, it represents the exponential increase in the state esti-
mate covariance matrix, 1 I addition, it also includes
the effect of the assumed Qn_1 ,via a B, component.

lil. Results for Time Invariant, Steady
State Filter Gain

Often, the system model assumes that the state transition
and measurement matrices and the measurement noise covari-
ance matrix are time invariant, and measurement samples are
uniformly spaced in time. It is also assumed that the filter
decay factor is constant. In this case, the filter update equa-
tions are:

—n,n = ¢En—1,n—1 +Kn (yn —Hqﬁ'n—l,n-l) (14)
M =H'R"H+ap "M _ ¢ (15)

= 1 gT p~-1
K, = M'H'R (16)

In these equations, the unsubscripted ¢, R, H, and « are the
time invariant versions of the corresponding subscripted
variables. After a sufficiently long time, the mattices M,
approach a steady state value, M, that depends only on ¢,
H, R, and o. When M, is approximated by this steady state
value, the filter gain defined in Eq. (15) can be precomputed.
This results in a significant reduction in the computational
load associated with filter updates. Of course there is some
loss of flexibility in using constant, steady state, filter gains.

When using steady state filter gain, K, transfer functions
from filter input to filter output can be evaluated. The transfer
function, in matrix form, is:

C(z) = (e -¢ +KH®) Kz (17)

Note that for an m-input, n-state filter, the matrix C(z)
is of dimension n by .



Analytic steady state tracking filter solutions are often
investigated for simple second and third order Kalman filters
(Ref. 4). Similar expressions are derived below for fading
memory filters. In a typical case, range (or range and velocity)
measurements are used in estimating range, velocity, and
perhaps acceleration. The resulting ¢ and H, when no velocity
measurement is available, are given in Table 1. Without loss of
generality, R is assumed to be unity. This can be done since
any linear scaling of R causes similar scaling for M, but has
no impact on the filter gain. Thus, the state update equation
is independent of scaling of R.

Table 2 presents the input-to-output transfer function
components for these filters, assuming steady state filter
gains. It is interesting to notice that the transfer functions
have all their poles at z = - «, within the unit circle.

Fading memory filters, described by Eqs. (14) - (16), are
being investigated for the DSN Advanced Receiver carrier
PLL loop filter (Ref.5), where phase, frequency, and fre-
quency rate correspond to range, velocity, and acceleration.
It is expected that these filters, in conjunction with a pre-
dictor, will reduce the effect of loop transport lag.

Similar filters were also successfully used in the Mobile
Automated Field Instrumentation System (MAFIS) Position
Location Demonstration®?and for the High Dynamics GPS
Receiver Validation Demonstration (Ref. 6), both performed
at JPL.

IV. Conclusions

The fading memory filter and Kalman filter are presented as
special cases of a general least squares estimator problem.
It is shown that both filters can be implemented by the same
set of recursion equations, with an appropriate choice of
parameters. A simple recursive solution for a class of fading
memory tracking filters is presented. Filter implementation
for this class is computationally efficient, and exhibits good
stability performance. It is proposed as part of the loop
filter for the DSN Advanced Receiver carrier PLL.

1Hurd, W.I., MAFIS Position Location Feasibillty Demonstration
Final Report (JPL Internal Document 7011-22), Vol II B.2, March
1982.

2Wallis, D. E,, private communications.
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Table 1. Matrices for second and third order filters

Order ] H R
17T
2 {0 1} a0 W
1T T%
3 01 T 1, 0, 0) (1)
00 1

Table 2. Closed form transfer functions from input range to output parameter

Output Second order filter Third order filter
parameter
2 o
Range (1—a)z(z—21+a) (A-0z (e +a+1)z%-3a+a)z+30?)
(z~ oz)2 (- a)3
2 2 2
Velocity (1-9"z@-1) l-a)zE-1)((B-3a")z+5a" -da~1)
Tz - )* 2T (z- )
3 2
Acceleration - (l-0"z(-1)

72 (2 - 0)>
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Appendix A

Derivation of Simplified Recursive Formulas

This appendix derives simplified fading memory equations,
Egs. (9) through (11), from Sorensen’s recursive solution,
given in Eqgs. (5) through (8). The simplification is accom-
plished in three steps. First Eqs. (7) and (8) are combined.
Then, a specific form of @ is assumed, resulting in a simple
equation for the update of state estimate covariance matrix.
Finally, a new state estimate update equation is derived. The
first step uses a matrix inversion lemma (Ref. 7):

@B+UV)yt = B -BUE+VBIUY VB! (AD)
Applying Eq. (A-1) to Eq. (8), results in:
B = B ~Eny (CK)
XA+H P, B CE)T
XH, By By (a2)
or
By = B B KO- K H, (a3)
but:
I-B,K, = I-H,P,, H
X @, P, H +R)
=I-(H,P, ,_ H+R -R) (A4)
XH,P,,  HtR)™
= R, (,P,, HI+R)"
combining Egs. (A-3) and (A-4) results in:
o = Boney THL WP HT AR
X @#H,P,,  Hi +R)RH
= B +HTRH (A-5)

Equation (A-5) has a form found commonly in literature
(Ref. 4). Next, let us assume that the matrix @, , has a special
form:

- T
Qn-l = Bn ¢n,n—1 Pn—l,n—l ¢n,n—1 Bn > O’ (A.6)

The rationale for this assumption is discussed at the end of
the appendix. With this assumption, Eq. (6) becomes:

= (ﬁ te n-l) ¢n n-—-l n-l,n-1 ¢Zn—1 (A'7)
Inserting Eq. (A-7) into (A-5), and assuming thatP and
¢, -y are invertible, we get:
1 = T p-l
Pr:,n - Hn Rn Hn
+ 1 -7 A-8
¢ ¢ n-1 n—ln—1¢nn1 (A-8)
B+e "1

Following the notation in the body of the paper, Eq. (A-8)
can be represented as:

= 7 p-l
M H R H +a ¢n,n1 ¢nn1 (A-9)
where
Mn = nln Inverse of state estimate covariance
matrix
1 .
o = . Filter decay factor
g +e™!

n

Note that e*-1 > 1 and B > 0, thus 1 > o, > 0. This
completes the derivation of the simplified covar1ance matrix
update equation. To complete the proof, the expression from
Eq. (15) is now derived for the gain X . From Eq. (A-5):

M—-P'

T p~1
nn-1 +Han Hn (A-IO)
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Applying Eq. (A-1) to Eq. (A-10):

T

M—l

n Pn,n—l ~Pn,n—1
-1 1 TN-1 p-1 yT
X(I+Rn n nn 1Hn) Rn ann,n—l

- - T
nn-1 Pn,n—l H‘n

~1 T
X (R +H n- lHrZ:‘) Hn Pn,n-l

n,

(A-11)

After multiplying both sides of this equation by Hf: R; 1
and some tedious arithmetic, Eq. (A-11) becomes:
MIH'{'R':l:P HT( anT'i'R )—1_

nn n,

(A-12)

This completes the derivation.

The selection of @, , as defined by Eq. (A-6), is of particular
interest. In most Kalman filter applications, @, serves a dual
function. First, it represents the modeled process noise, which
is its declared objective. Then, it also reduces the risk of num-
erical instability by establishing a minimal value to the state
estimate covariance matrix. The interested reader can evaluate
Egs. (5) through (8) for simple cases, using @, = 0, and observe
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that P, ,, approaches zero as # goes to infinity. Since, for non-
trivial Kalman filters, P, , must be positive definite, small
numerical problems can make the filter unstable. For this
reason, Kalman filter designers tend to inflate @, above its

‘modeled level.

The fading memory filter does not suffer from a corre-
sponding problem. Even when Q is zero, Pn " reaches a finite
nonzero value. Conceptually, a Kalman filter Pn . is affected
by a larger set of measurements than a fading memory filter
Pn‘ , and thus tends to be smaller. Since @, is not required for
numerical stability, a reasonable choice is for Q, to be propor-
tional to the state-estimate covariance matrix, or to a related
quantity, as defined by Eq. (A-6). It can be viewed as an
adapt1ve definition of @, . Also, if @, is chosen as 0, the decay
factor "1 defined in’ this appendlx, and the filter decay

factor a, are reciprocals of each other.

Anderson and Moore (Ref. 8) suggest that a fading memory
filter can be viewed as a Kalman filter with exponential infla-
tion applied to past @, and R,. They also emphasize the
inherent stability associated with such a filter. Their approach,
though insightful, does not simplify filter mechanization.

In summary, the particular form of @, used in this apper-
dix is not derived from an independent statistical model of
process noise, thus resulting in a sub-optimal solution. In
many real life applications, the benefit associated with
numerical stability, reduced sensitivity to mismodeling, and
reduced computational load may far outweigh this loss in
optimality.




